

Escape From Time Tower

An exploration of time manipulation
mechanics in a gameplay environment

with Unity

MComp
Computer Games Development

May 2019

University of South Wales

By
Jack Hodge

Jake Passmore
Liam Vallance
Nicky Jones
Oskar Dubas

Primary Supervisor: Dr Mike Reddy

Secondary Supervisor: Dr Carl Jones

Table of Contents
1. Abstract 3

2. Introduction 3
2a. Overview 3
2b. Aims of the Project 3

3. Literature Review 4
3a. Time Mechanics In Games 4

3a-1. SuperHot 4
3a-2. Prince of Persia 5
3a-3. Braid 6
3a-4. Quantum Break 7
3a-5. Titanfall 2 8

4. Production of Game 9
4a. Short business plan 9
4b. Specification 10
4c. Software Specification 11
4d. Contingency plans 11
4e. Assets 12

4e-1. Costs 12
4e-2. Free 12

4f. Development 12
4f-1. Player Character (Darren) 12
4f-2. Procedural Room Generation 13
4f-3. Time Mechanics 14
4f-4. Enemy Types 17
4f-5. Weapons Systems / Item Drops 18
4f-6. Bosses / Boss Rooms 20
4f-7. Models / Textures 22

4g. Testing and Feedback 23
4g-1 Itch.io Early Release 23
4g-2 Friends and associates 23

5. Conclusion and Future Work 24
5a. Conclusion 24
5b. Future work 24

5b-1. Reverse Time Mechanic 24
5b-2. Time Travel Mechanic 25
5b-3. Procedural Room Generation 25
5b-4. Animations and Art Design 26
5b-5. Pick up Items 26
5b-6. Save/Load 26
5b-7. Audio Design 26

6. References 27

7. Bibliography 28

1. Abstract
This project uses the game created Escape from Time Tower in order to demonstrate the
uses and implementation of different time manipulation mechanics into a game setting. This
paper touches on previous games that have successfully used time based mechanics in
their gameplay and discusses the the success of these mechanics and where things could
go wrong if time manipulation mechanics are not properly implemented. The game will use
each level to demonstrate a different time manipulation mechanic in order to show its
effectiveness or ineffectiveness in the gameplay environment created. Discussed in the
report will be how the mechanics may or may not work in this created test gameplay
environment but also where any failed mechanics may be effective in other gameplay
environments.

2. Introduction

2a. Overview
This project is aimed to explore and understand the utilization of time manipulation as a
gameplay mechanic. Throughout this project we will be developing a isometric top down
dungeon crawler shooter game as the main test environment and an example of these time
manipulation mechanics. We will be manipulating time in many different ways separated via
levels in the game world so that each time mechanic can be contained and utilized in a stand
alone environment while maintaining a playable and enjoyable gaming experience. The
methods of manipulating time in the unity engine will also be explored with a conclusion as
to which method we found most reliable and why we feel that this method was the correct
option to go with.

2b. Aims of the Project
1. To create a game with two different styles that do not usually go together (Gungeon

style gameplay and time mechanical gameplay).
2. To research the different types of methods games and movies have used when

dealing with time. Doing so will enable us to take the experiences from these
games/movies to avoid mistakes or enhance what was great.

3. Literature Review

3a. Time Mechanics In Games
Time mechanics have been used in many different games of different genres over the years.
This section will look into different games and how they have used a mechanic. Time
mechanics are used in various different ways, in some games they are used as an ability for
the player to use to manipulate objects and enemies in the game. An example of this is
Bethesda’s game Dishonored, where the player has access to an ability that allows them to
slow down time for 12 seconds or more if the ability is upgraded, allowing them to sneak
past or kill targets instantly.

3a-1. SuperHot

Time mechanics can be used as an essential part of the gameplay. Superhot, a game
developed by Superhot Team, took advantage of using time as a key feature. In Superhot,
time moves when the player moves, allowing every action that they take to be thought out.
Superhot was also released to the virtual reality platform which took advantage of the player
actually being able to move their body to unfreeze time.

The reason why this was a successful game is because the mechanic was simple yet very
refined. Although time was based off your movement, it allowed them to further enhance the
mechanic it self; forcing players to pick up objects while time is slowed down and throw them
away to their advantage.

We used what was learnt from playing Superhot and applied a very similar time mechanic in
our game, where time flow is based off the player’s movement similar. Because of this,
players have time to develop a tactic before proceeding through the first level.

3a-2. Prince of Persia

Prince of persia: The sands of Time uses a reverse time mechanic to allow the player to
reverse the game back in time as long as they have enough “sand” collected to enable this.
This mechanic was created to allow players to correct a mistake in battle or to try to traverse
a difficult parkour section.

This use of a consumable and replenishable ability to rewind time is part of the key aspects
of the ability in the gameplay design. It acts as a means to make the player work for the
ability, rather than just being able to use it whenever they want by forcing the player to kill
enemies and replenish the sand. It also gives the weapon, the dagger of time, an important
role in both gameplay and story as it is the dagger that holds the sand that the player needs.
The draining of sand from the enemies like blood gives a good reason for the enemies to
disappear when they are killed, saving up resources (vital in for game development in the
time of release) while also providing a story reason for this to happen (Mechner, 2008).

Time is an important aspect of not only the gameplay but the story of Prince of Persia: The
Sands of Time. The whole story narrative uses this gameplay ability in a clever way. By
having the game narrative told like a story where the whole storyline of the game is an actual
story being told by the Prince as he recalls the past events of his history. This is done very
cleverly as when the player fails by falling to his death for example the Prince will narrate
over saying “No, no, no, That didn’t happen” implying that the action the player just failed
was not part of the story the Prince is telling; as he obviously didn’t fall to his death if he is
telling you this story. This as a gameplay element allows the player to fail and reset without
feeling like it is a complete failure and more of a misstep that they will now correct on the
next attempt.

A rewind mechanic is used in second level of our game in a similar way for a similar reason.
It allows the player to make a mistake and take a hit but undo it, restoring their health (but
also the health of their enemies) back to where it was beforehand. This mechanics seems to
work well with the gameplay style here as the game is very difficult (even more so on the
second level over the first) and so it is easy for a player to get overwhelmed by enemies.
This way, they can use the rewind to get out of that tough situation and quickly rethink their
approach.

3a-3. Braid

Platforming games have also taken advantages of using time as an ability to help them solve
the puzzles, a game that uses this mechanic well is called Braid this was a game that had a
different time mechanic for each of its different worlds, this had multiple time mechanics that
the player could use to solve the puzzles including Rewind time, unaffected objects from
anytime mechanics.

"If you think a game is 'Madden 2008,' then hey, games probably aren't art."

“So with ‘Prince of Persia’ and ‘Blinx,’ they had this idea that it would be cool to have
rewind in the game. But they didn't want to deviate from their core idea of what a game is
about (you have a limited number of lives, and you fight guys and jump over traps, and if you
get killed too many times it's game over). So in those games the rewind was just this sort of

superfluous thing. Yeah, it was kind of cool, but they didn't allow it to be really meaningful
inside the game design. Because if they did that, it would have destroyed the rest of their
design, removing all the consequence from the fighting or the puzzles.”

Two quotes by the creator of Braid Jonathan Blow, Blow had an inspiration to make a game
that he felt was captivating, interesting and challenging focusing on the gameplay before the
art design of the game, the first showcase of his game which won the [Independent Games
Festival] game design award at the GDC in 2006 was filled with placeholder design showing
that the award is for the quality of the gameplay and narrative over the look and feel of the
game. Blow had issue with the way time had be utilised in games in the past as they did not
have much of an impact of the games world or narrative and were too much of a gimmick for
the players to play with (Totilo, 2007).

The success of this game shows the success that can be achieved with the correct outlook
and use of time manipulation mechanics as it shows how thought into not only how the
mechanics are used but consequences and rewards of using these mechanics can really
play a big role in the feel of the game.

Had the success of the time mechanics system implemented in Braid not been so great it
could have been at risk of being seen as this knock-off weird feeling Mario game with a
painty design but instead it has stood out as a prime example of the ever growing indie
development scene and great utilisation of time based mechanics in a gameplay setting.

3a-4. Quantum Break
According to Workman, (2016) Quantum Break is a Third-person science fiction action
shooter that was developed by Remedy Entertainment. Players play as Jack Joyce, who has
been given the ability to control time. These time powers allow players to use creative
methods to defeat enemies with a combination of gunplay. Using these abilities the players
will need to play a vast number of levels with a new puzzle or target to defeat with a
combination of all the time abilities.

There are 6 different time abilities within Quantum Break :

● Time Stop
● Time Vision
● Time Dodge (Focus Time)
● Time Shield
● Time Blast
● Time Rush

All of these abilities can be upgraded to have longer and increased outputs.

Time Stop will freeze objects and enemies within a certain range of the affected area. This
allows the player to use their weapons to kill these enemies. This also allows the player to
freeze objects in time to allow them solve challenges and puzzles. (Workman, 2016).

Time Vision is the ability to be able to see the lay of the land. Time Vision shows objects
within the surrounding area such as enemies weapons as well as items and collectables, this
can be used when in combat to reveal enemy locations as well as useful interactables to
help turn the fight within combat. (Workman, 2016).

Time Dodge gives the player the ability to evade danger for a few seconds, this can allow for
the player to get behind enemies to attack from behind, it can also be used to dodge
grenades and other attacks. (Workman, 2016).

Time Shield is the defensive ability that can protect the player from incoming enemy fire. It
allows the player to regenerate their health and plan their next move to overcome the
targets. It can also be used to shoot through to kill enemies while being protected from
danger. (Workman, 2016).

Time Blast an offensive ability can be used to take out single or multiple enemies within an
environment, this is the only time ability that can deal damage and kill targets by blasting
them away. (Boccher, 2015)

Time Rush is the ability to allow the player to freeze time within the entire level and allows
the player to dash to another location within a split second. Further in the game this ability
can be used with other abilities to take down targets easier and faster. (Workman, 2016).

All of these abilities are used with a stamina bar so each ability can only be used so often
within a given time (Workman, 2016).
Of these abilities Time Rush and Time Freeze will be most beneficial towards the
development of Escape From Time Tower. A Pause Time Function has been used within the
third level of the game, this Pause Time will work similarly to the Time Freeze function within
Quantum Break. The ability will allow the user to pause time for a short period, freezing all
enemies within the level, only allowing the player to be able to move. This ability will only be
usable for a short time before the function time ends and all the enemies within the scene
are moving once again.

3a-5. Titanfall 2
Occasionally Time Manipulation mechanics can be used not as a main mechanic in the
game but as an alteration to the gameplay. One of the levels in Remedy’s First-person
perspective shooter Titanfall 2 (Remedy Entertainment, 2016) called “Effects and Cause”
breaks the typical run and shoot gameplay of the game and introduces the ability to travel
back in time, allowing the player to experience two versions of the same level. Player’s
ability to travel between two versions of the world is instantaneous and with no limitations.
This time travel mechanic created a good opportunity to tell a story of the past events,
introduced new puzzles and new ways to deal with enemies, everything without breaking the
fast pace of the main gameplay. This level is considered one of the best moments in the
Titanfall 2 by many (Hamilton, 2018) and it is a good example that Time Manipulation has a
place in any type of game, and it can enhance the gameplay in many ways.

4. Production of Game

4a. Short business plan
The game will initially release as a free test build (beta) on the indie game site itch.io, this
will give us the ability to have an early build of our game tested my many people from around
the world providing us is real consumer feedback on the development of this game, with this
feedback the build of the game can be progressed and pushed towards a final build which
can be listed as a “pay what you want” title with our desire to at least reach the £76 publish
fee required for us to publish to steam if the game proves to have some success.

The game will be released for PC using Steam - a digital distribution platform for video
games developed by Valve Corporation if the release on itch.io proves successful. Console
release (PS4/Xbox One/Switch) will be possible only if the game is successful on the Steam
platform in order to justify the purchase of the console dev kit. Mobile platform required
additional work to translate twin-stick mechanic into a touchscreen, which may require
additional development time. For this reason, the mobile platform can be considered after
potential success on Steam.

Steam Direct, Valve’s Developer Program to distribute a game, requires a fee of £76 to
publish a game. Currently, we have no plans for microtransactions or DLC, therefore no
additional costs are needed for the Steam release. However, if our game ever reaches a
$100k revenue we will be required to purchase a Unity Plus account which costs $35 per
month.

The Game upon release will have a price of £2.99 ($3.99). This puts the game in a price
range way below high detailed pixel graphics indie games like Enter the Gungeon (£10.99)
or Starward Rogue (£8.99) and above simple 2D browser Shoot Em Ups like Bit Blaster XL
(£0.79) or Ink Plane (£0.79). Our price is in the range of simple indie Action games, usually
with pixel graphics and simple chiptune soundtracks like Rush Rover (£3.99) or Skelly Selest
(£3.99). There is a possibility of reducing the price during the Steam Sales to anything
between -%70 and -%90.

4b. Specification
We’ll be using time mechanics from games such as Superhot, Max Payne and Overwatch
with a Gungeon style gameplay using the Unity game engine (2018.2.21f1).

The object of the game is to get “Darren”, a daredevil but charismatic fellow, to the bottom of
Time Tower before it explodes. Each level will be represented by a different time mechanic
that can be used in-game to challenge the player while progressing through those level, the
different time mechanics are as follows: Slow down, Speed up, Stop time & Reverse time.

Slow down time mechanic: The way the slow down time mechanic will be implemented is
based off the player’s speed, if the player continues to move at its maximum movement
speed time will flow correctly, however each time the player slows down for whatever reason
so will time.

Speed up time mechanic: The speed up time mechanic will be the only time mechanic that is
based off player shooting, the player will shoot a time bubble bullet that when it hits an object
it will create a bubble of time which when a player, npc or moving object enters will
drastically increase their speed to simulate time.

Stop time mechanic: The stop time mechanic is as the name suggests the ability to stop the
movement of everything (that is capable of moving) when the ability is used.

Reverse time mechanic: When the player reverse time it reverses time of everything that
moves in the level, it is limited to a short period of time because the scene captures each
frame and inserts it into an array which is how they are able to reverse time, so to prevent a
massive performance hit the number of frames the array can hold is limited. So the player
can not get to the end of the level and then reverse time back to the start of the level, the
player will also be able to stop half way through the reversing time, if for example the
maximum time that can be reverse is 5 seconds then the player can stop reversing time 2
seconds into that.

With some of the these time mechanics there is the possibility that they can be used in a
way to make each level very easy if exploiting them correctly (with the exception of the slow
down time mechanic as that is applied to the players movement and as such comes with its
own risk/reward), so each time mechanic will have a cooldown usage applied to them to
prevent this, but not only that it will add an extra level of thought in the player’s mind to
consider as the cooldown will potentially be lengthy and punishing, so although the abilities
are powerful, if used incorrectly/inappropriately it could cause the player’s death.

4c. Software Specification
Software that will be required for the project :

● Unity 2018.2.21f1

● Visual studio 2017

● Blender (if creating own 3d models)

● Inkscape (for 2D gun graphics)

● Github

● Google Docs

4d. Contingency plans
In the event of unforeseen circumstances a contingency plan is necessary to ensure the
project stays on track. For example, some features we initially planned to include in the
game could prove too difficult to implement or too bug-ridden to fix in time for deadlines. To
combat consequences of this we need to focus on good object oriented programming
techniques early on in development cycle to ensure each feature is as self-contained as
possible. We can then drop any problem features from the final build with little to no
collateral damage.

On the other end of the scale, planned work on the project could be completed earlier than
expected due to either Unity engine’s wide range of tutorials and resources or the inclusion
of 3rd party libraries in our product. Although this will help us achieve a playable build
quicker, it will also leave the team with little to implement to make our game unique.
Therefore, it is also important to record a log of all ideas in the planning stage, even if they
seem to be out-of-scope for the timeframe we have. This log could then later be used as a
back catalogue of further features.

A potentially disastrous situation could arise in the event that a team member cannot
perform their duties or leaves the project for any reason. In this case their responsibilities
could prove vital to the state of the project and result in an increase in workload for all other
team members. This is why it is important to assign smaller workloads to all members;
simultaneously reducing the impact of a missing person while also providing everyone else
with enough time to tackle additional jobs.

As with every software engineering project, data loss through hardware, software or network
failures possess a very real danger to the survival of the work. Although these sudden faults
are often unavoidable, precautions have been made the ensure no major data loss occurs.
This includes using a version control system such as Git to keep a copy the work as well as

all history in the cloud, and each team member individually keeping their own up-to-date
version of the project on their home computers.

4e. Assets

4e-1. Costs
Because the group felt that the default Capsule models that were created at the start of
development for the enemies were not good enough, it was decided that the Unity Asset
Store was the next best place for help. There was a very good model package for
$5.36/£4.26 inc VAT, the name of the package is Fantasy Robot Pack 1, the reason this
package was chosen was due to the fact it had both rifle and melee models with animations
already created for both, this allowed them to be imported relatively easily and only had to
create an animator for the animations and call them appropriately during code.

4e-2. Free
There were four texture assets used from the Unity Asset Store to create the levels realism,
these assets are as follows: Free Sci-Fi Textures, eU Sci-Fi textures, Sci-Fi Texture Pack 2
and Futuristic Panel Texture. A Unit Frame asset was also used for the player’s health to be
shown on the UI called RPG Unitframes #1.

4f. Development

4f-1. Player Character (Darren)
The key most important and memorable part of a game is arguably the player character. The
player character is a key tool to the narrative of a game supplying backstory, reason and
controllability to the story. The player character is very commonly the main tool for interacting
with the game environment allowing the user to maneuver around the game space and
interact with objects around it. In Escape From Time Tower the player character is named
Darren, having a name gives the player character an identity for the player. Darren is tied
directly to the narrative of the game being an experiment in the the topmost highly secretive
floor of the tower. After a major accident that resulted in an explosion in the third floor, the
player finds themself freed from their cell and with the goal of survival and escape from the
tower.
This narrative is what provides the player with the goal to control Darren though each room
on each floor in order to fight their way to freedom.

The early designs of the player character were very basic pill shaped objects which simply
provided the ability to build the player movement for maneuvering around the game space.
The next design addition was a simple weapons function to the pill object that allowed the
player to move and shoot, these were the base designs allowing for further development of
the game test bed such as the scenes, basic time mechanics and some enemies.

https://assetstore.unity.com/packages/3d/characters/robots/fantastic-robot-pack-1-110974
https://assetstore.unity.com/packages/2d/textures-materials/free-sci-fi-textures-9933
https://assetstore.unity.com/packages/2d/textures-materials/eu-sci-fi-textures-set-volume-1-135089
https://assetstore.unity.com/packages/2d/textures-materials/sci-fi-texture-pack-2-42026
https://assetstore.unity.com/packages/2d/textures-materials/futuristic-panel-textures-lite-80176
https://assetstore.unity.com/packages/2d/gui/icons/rpg-unitframes-1-powerful-metal-95252

Once the game was in further development the player character needed a bit of a
personality upgrade, with the lack of any designers in this project team a very simple design
was picked of just a red cube structure with two gun arms and a face, this face sparked the
interest in a “cute” and “silly” styled character that could remain memorable while also
providing possibility for an upgrade in the future through commissioned design work. The
face of this character was also designed to change from a “smiley” face when not shooting to
and “angry” face when shooting which added some charm to such a simple design and thus
Darren was born.

Darren later went through another simple upgrade in his character design, H.A.T.S, as we
know there are no such things as “bugs” and are simply “features” we did not intend. Well we
had one of these “features” once the enemy models got an upgrade and due to the fact that
the enemies shot straight forward and not down at Darren we discovered that due to scaling
issues the ranged enemies now shot over Darren's head. This meant that the player could
no longer take damage from enemy projectiles. Simple scaling changes could have solved
this problem easily but an opportunity was spotted and so a new system was implemented
we tactically called the Highly Advanced Targeting System. This system added
changeable hats for the player character, these hats increased the height of the player
character allowing for the player to take damage once again while also providing the player
with some customizable personality for their character through the wardrobe scene, where a
selection of hats are accessible.

4f-2. Procedural Room Generation
In order to give players a different experience each time they played this game, procedural
generation was added to randomise the map layout each time a level was loaded. This
technique is fairly common in small development teams since it vastly reduces (or outright
removes) the large amount of time needed to manually create levels (Davis, 2017).

Through this system, the programmer can set variables such as how big/small the rooms will
be, how many of these rooms the player will need to beat before reaching the boss and how
frequently enemies will appear in these rooms. The procedural generation algorithm will then
use these values to create a room with 1-4 doors in each direction before populating it with
enemies. Once these enemies have been beaten, the doors will open and new rooms will
spawn; allowing the player to make their own path through the level. Upon completion of the
final room, the algorithm will then spawn a man-made boss room perfectly rotated and
aligned with each possible exit door.

4f-3. Time Mechanics
In order to manipulate time on GameObjects, two fundamental classes were needed in order
to control both global and local time dilation:

Unity Time Scale:

Unity Time Scale is a very effective variable that can be used to manipulate how time
is perceived by all GameObjects in a scene. This affects everything from how
frequently a script’s Update function is called to how Unity’s underlying physics
engine acts. It does this by applying time scale to the delta time (time since last
frame) variable each frame. For example, if a Time.timeScale of 0.5 (half speed) is
set and it takes the system 0.03 seconds to produce each frame; any objects
referencing Time.deltaTime will instead receive the value 0.016 (0.5 * 0.03). This will
cause time dependent code such as timers or movement to think only half the
amount of time has elapsed since the last frame.

Although Time Scale is very useful when slowing the entire scene down, there are
some also some circumstances where this feature would not be useful. The first is in
the case of a stop time mechanic. Here Time.timeScale would need to be set to 0 in
order to freeze everything in its place and although this would be acceptable for
things like pausing the game, problems would occur when allowing certain
GameObjects to carry on unaffected. This is because since Unity’s physics engine is
tied into using delta time, it’s gravity and collision detection would also be
non-functional.

Another instance where a different technique would need to be considered is if only a
relatively small amount of GameObjects would need to be affected at one time. Since
Time.timeScale is a scene-wide modifier that affects built in Unity features such as
physics and collisions, all new classes created throughout the remainder of the
project would have to be programmed around this potential change.

Local Time Dilation:
The Local Time Dilation class was created to address the shortcomings of Unity’s
built in time dilation and acts as a middle-man between that and the time mechanics
themselves. This class is attached to all GameObjects that can be affected by time
modulation and has its own dilation variable to apply to delta time as opposed to
using Time.timeScale. LocalTimeDilation.getDelta can then replace Time.deltaTime
in any scripts attached to the object in order to obtain the locally manipulated delta
time.

This is beneficial since it has no bearing on Unity’s global physics and collision
system, meaning that any object can be frozen through setting their own dilation to 0,
yet it will still detect and act on a collision if another unfrozen object touches it.
Stopping time was a major problem with Time.timeScale since any object that moves
through Time.unscaledDeltaTime whilst the scale was set to 0 can move through
solid geometry ignoring all collision and trigger events.

There currently exists 5 different time mechanics in the game; they are as follows:

Slow down time:
Slow down time was a fairly simple mechanic to add because of how easy Unity handles
global time dilation. Here, the rate of time in which the game is playing is controlled directly
by how fast the player is moving.

In order for us to make the slow down time mechanic to our specifications, we had to link
Unity Time.timeScale variable to the player’s movement. This was easy to map since all
movement inputs come together to form a single direction vector in the Update phase of
Unity’s order of execution. The magnitude of this vector can then be obtained by the slow
time mechanic to judge how far the player is pushing the stick or if they are pressing any
movement keys, before applying it to Time.timeScale. To maintain the physics in our game
we also had to adjust the variable that affects the interval in seconds in which physics and
other fixed frame rates gets updated.

What allowed us to refine this feature more and introduce new abilities alongside it was the
fact Unity also has an non-affected delta time variable called Time.unscaledDeltaTime. This
runs as Time.deltaTime would, as if not being tampered by Time.timeScale. With this, we
were able to create objects that aren’t affected by the modulated time scale, such as the
Time Gun which can shoot normal speed bullets regardless of if the time is slowed down by
the player.

Speed up time:
The speed up time mechanic works similar to the slow down time mechanic in that it adjusts
an entities speed. However, the speed up time mechanic isn’t based off the players
movement, but a local time bubble that is created by the player. The player will have the
ability to shoot a time bubble bullet, which, when it hits an object will create a time bubble.
The speed up mechanic is then applied to everything within the bubble, including the player,
enemies and bullets, two different methods were discovered when creating the
implementation of the speeding up effect.

Method 1:

Originally, there was no way to adjust the timeScale for specific entities in Unity.
Therefore, the first method used was applying a force to all affected entities’
rigidbodies. This was achieved by gathering the direction vector of the GameObject,
and pushing its rigid body further in that direction each frame. This gave the illusion
as if time itself was sped up in the bubble.

Method 2:

A second method was later implemented once the Local Time Dilation class had
been created. This method involved adjusting the LocalTimeDilation.dilation variable
for each GameObject that comes into contact with the time bubble and reverting it
once they leave. The result of this meant that all time dependant code ran by the
affected GameObject (including timers and animation controllers) were also affected,
giving a more realistic look.

Reverse time:
The reverse time script does not utilise the Unity timescale at all and instead all the
functionality is handled with the scripts created for it. The reverse time script that handles the
recording of the gameObject data is written in a open ended way without direct reference to
specific objects meaning that it works on any object it is attached to. The game objects that
the script is attached to will then contain their own list of previous data called pointsInTime,
this list is being updated with the objects positional data, rotational data and health value
(only if the game object uses a health manager), the list contains 3 seconds worth (we
decided 3 seconds for balance and performance reasons) of these data points popping the
oldest off the bottom when the list is full to make room for the newest object data.

Once the player activates the reverse time ability, every game object which contains the
reverse time script steps backwards through their list of of previous data points setting their
current values to equal the listed set each step, these object step back through the list until
the lists are empty at which point the game resumes as normal and every reversible object
begins filling their lists again.

During the rewinding process any object that uses a weapon such as Player, Enemies and
turrets are temporarily prevented from being able to fire their weapons. Without this,
enemies while rewinding would continue to shoot at the player character breaking the illusion
of time flowing backwards as well as leaving the player in a defenseless situation causing
frustration at the game.

While rewinding if any object reaches their point of creation (such as a the moment a bullet
was fired from a gun) the object will be destroyed to help give further the illusion of time
flowing in reverse as if time continues to move backwards then that object did not exist at
that point in time and so should not persist as time resumes as normal.

Stop time:
The stop times freezes time within a level. When time has frozen everything but the player is
frozen, enemies are unable to move the same for bullets that are active within the the scene.

Method 1:

Time stop was created by using Time.timeScale, this was created by using
time.unscaledDeltaTime on the player and ScaledDeltaTime on everything else. By
doing this it will allow the player to move when the time.timeScale is equal to 0.

Method 2:

Just like with the speed up time mechanic, a second method was later developed that
uses Local Time Dilation in order to fix problems created by the use of
Time.timeScale. In this method, when time is stopped the script iterates through all
enemies and bullets currently active in the scene and sets their
LocalTimeDilation.dilation variable to zero.

Time travel:
This mechanic was implemented later in the development. It allows the player to move
instantly between two versions of the same level. In one, the player will encounter enemies
as usual (present time) however, in the other one (future), there won’t be any enemies, but
the layout of the level will be designed specifically to block player’s way.

In this technique two copies of the same level are placed in a specific distance from each
other in the same scene and player model will move on the x-axis between them. The
camera also needs to be moved on the same axis at the same time. Otherwise, the
transition won’t be instantaneous. Unity engine can correct the position of the player
automatically if he accidentally teleports into a wall that is present only in one of the “worlds”.

In this level, the quality of the gameplay is partially depended on the quality of the room
design. In order words, the travelling between two different worlds only makes sense if the
level itself is built around this mechanic. For that reason, levels must be created manually.
This approach prevents the usage of the procedural room generator. An appropriate method
needed to be created which can accomplish necessary processes presented in room
generator function in order to start a level (e.g. spawning player and camera, setting the
enemies and powerup drops).
Enemies in the present world are spawned randomly using the random spawn algorithm.
They are created in the area further away from the player spawn point, preventing the player
from being swarmed with enemies from the start. In the “future” level obstacles were meant
to be spawned randomly around the level using the same algorithm as enemies.
Unfortunately, during the testing, this approach caused too many glitches and
inconsistencies in level difficulty, so now walls are placed manually.

4f-4. Enemy Types
Three different common enemy types were developed for Escape From Time Tower. They
are as follows:

Melee:
Melee enemies are the simplest enemy types and simply switches between wandering
around searching for the player, and chasing it when a line of sight has been established.
The enemy can break this line of sight by quickly moving out of the bot’s field of view either
through the use of dashing or time mechanics.

Melee enemies deal damage instantly upon colliding with the player and then periodically
every second until the player moves out of range.

Ranged:
Ranged enemies begin with the same basic wander behaviour as the melee enemy, but
instead use ranged attacks when they eventually find the player. On spawn, these enemies
are equipped with the same basic handgun that the player uses, but like the player, they can
also make use of weapon drops from fallen enemies.

If the player is then spotted at any time, the AI will switch into its fight behaviour, making use
of the predictive aiming (aiming at where the player is going to be, as opposed to where they
currently are) to shoot the player. This behaviour still makes use of the basic chase action,
but will also stop short when in an acceptable distance since there is no longer a need to get
close.

An additional behaviour has also been added to the ranged enemy to allow it to actively seek
out and collect gun power-ups, before switching weapon to the more powerful option. This
behaviour holds lower priority than the fight behaviour and will therefore only be activated if
no player is detected.

Hybrid:
A common hybrid was added later into development to give the illusion that the melee
enemy AI was much more dynamic than mindless drones. The hybrid enemy runs off an
external state machine script to allow the enemy to switch seamlessly between the
previously mutually exclusive melee and ranged scripts.

To achieve this, the melee enemy was given the option to be able to search and collect
power-ups similarly to gun enemy. When the hybrid script detects that one of these has
been picked up, it shifts the enemy onto the ranged AI to allow it to aim and fire its weapon.

Since unlike the ranged enemy, the hybrid enemy initially spawns with a melee AI; the
enemy itself does not possess the infinite ammo pistol. This means that once the
ammunition for all guns picked up by the hybrid enemy is depleted, the AI reverts back to the
melee script.

4f-5. Weapons Systems / Item Drops

Weapons
To add some variation into the ‘run and gun’ playstyle of our game, multiple different weapon
types have been added for use by the both the player and enemies. Originally, all advanced
weapons were treated as power-ups for the starting handgun and therefore ran off a timer
which allowed the user to fire the gun as many times as they could before they lose it.
However, after a playtesting this system, it was decided that they would instead have limited
ammunition. This removes the pressure of forcing the player to use their newly acquired
weapon before the timer runs out and allows them to save their ammunition for more
pressing situations. Because of this, a weapon switching system also had to be implemented
into the game. This makes use of the number keys and scroll wheel when using PC controls
and the left and right bumpers when using a controller.

Handgun:
The player and all common ranged enemies spawn with a basic starting handgun.
This has infinite ammunition and is therefore accessible to its users immediately. The
low damage inflicted by this weapon encourages the player to seek out more
powerful weaponry from fallen enemies.

Shotgun:

The shotgun was originally implemented by creating a new pellet prefab containing
five of the normal bullets each facing a different direction. This would cause them to
spread out in different directions when instantiated to mimic the effect of a shotgun
spray. However, this was later changed to instead instantiate multiple regular bullets
and change their direction vectors at runtime. This allows us to tweak and randomise
the degree of the spread easily.

Machine Gun:

Since all guns run off the same abstract base class, the machine gun was created by
simply increasing the rate of fire of a regular gun.

Extra-Damage Handgun:

The extra-damage handgun was created by increasing the damage of the regular
handgun. The fire-rate of this weapon was also lowered to make the player consider
the trade-off of using it in each situation. Because of this, this gun is better suited to
more accurate players.

Time Gun:

The time gun works just like the regular handgun but fires bullets that aren’t affected
by any time dilations. This was created through the use of a new bullet prefab which
uses unscaledDeltaTime as its method for moving, this prevents it from being
affected by time dilations. Use of a different prefab not only made the implementation
of this gun easier, but allowed the look of the bullet to be customised in order to
stand out from the rest.

Weapon Drops
Within each of the levels, the player has a chance for a weapon drop, these drops are split to
a random generated chance of them being dropped by an enemy when they are defeated.
These weapon drops include a machine gun, shotgun and a weapon that outputs extra
damage.

When these power ups were first implemented they originally used a timer, to determine how
long the player could use it for once they picked it up. In the early stages of the development
of the power ups the player could only collect one power up at a time and if they picked up
another power up it would override the existing power up that they had equipped.

Health Drops
After realising the game may be a bit to difficult for the novice/casual player we decided to
make some changes. One of these changes were the addition of health drops. In order to
reduce the chance of useless drops, these only drop if the player has lost health. The lower
their health is to zero the higher the chance of health packs being dropped from the
enemies.

To keep the balance of the game in check it was decided that if the roll should fail and a
health pack is not dropped from the enemy then it will drop ammo for the player instead,
originally if the player failed its roll that would be it that no ammo would drop and that would
be the punishment for losing health, but it was felt that the player shouldn’t be punished if
they have lost health by giving them any ammo to kill more enemies for a higher chance of a
health pack dropping.

This allowed us to tone down the difficulty drastically while maintaining the motivation to not
get hit but if they did then there is still ammo drops to allow them to kill the enemies
easier/faster.

4f-6. Bosses / Boss Rooms
To allow for maximum compatibility with early mechanics, each boss AI is built upon a
foundational abstract enemy class. By default, this allows the bosses to access all common
behaviours such as chasing and wandering. As well as this, each boss has been given their
own specialised behaviours and level room in order to make them stand out from the
common enemy.

These bosses are as follows:

Jimmy the failure:

This is the first boss you’ll encounter in the game, as it is an introduction boss to the
player the general playstyle of the boss is not dissimilar to that of the normal enemies
the player have encountered so far, The boss has a considerable amount of health
compared to the enemies and have three unique mechanics that isn’t shared by the
enemies.
Gun Switching: The first mechanic the player will be introduced too is the gun
switching mechanic, as the name suggests at different health percentages the boss
will which the gun it is currently using to a different one to add more spice to the fight,
currently the boss changes from a normal pistol gun to a shotgun and then finally
when the boss is less than 15% health it will switch to a powered up pistol which
deals more damage than any other gun and will be the most crucial part of the fight
for the player.

Teleporting: The second mechanic the player will be introduced too in the middle of
the fight is teleporting, when the boss reaches half health it will randomly teleport at a
different location inside the room.

Turret: The third and final mechanic introduced into this boss is a turret inside the
room, in the centre of the room there is a turret pillar that will periodically shoot
different types of guns out from pistol to shotgun and in different positions and
patterns to keep the player on their feet and always being vigilant about their
location.

The Insane Missile Joe:

The main feature of this boss level is the Boss homing missile that it fires at the
player instead of the standard gun. Once the player has entered the room the boss
will not engage them until they have entered the main circle of the arena, this being
the circle of white walls that the player can use as cover to avoid taking damage from
the missiles. Once the player gets behind the pillar then the boss will lose sight of the
player and will stop shooting. This gives the player time to think of a new angle of
attack to defeat the boss.

King Danny-Rhys:
The stand-out feature of this boss is its ability to dual wield ranged weapons
(specifically machine guns). Upon spawn, the boss is placed at the centre of the
room, facing the door and remains rooted to this location throughout the fight. When
the player enters through this door the boss starts rapidly firing its weapons aimed
slightly to the left and right of the player, trapping them in the centre of its view.
From here, the boss runs off its first behaviour of simply swaying its guns left and
right for ten seconds, forcing the player to comply with its movements to remain
unharmed. During this behaviour, the player has the choice to stay far away from the
boss where the large distance between bullet streams give them comfortable room to
move around, or move in closer to obtain a better attacking position.

After these ten seconds are up, the boss begins its real attack of angling its guns in
at each other, making damage unavoidable should the player stay between the bullet
streams. This forces the player to either stop time and step out of the boss’s centre
field of vision or dash through the bullets and potentially take some damage. This
creates the prime opportunity to deal damage to the boss from its side.

Once the behaviour is finished and the boss realises that the player is no longer in
front of them, it will maneuver its guns to their widest angle and turn toward the
player with only the trailing gun (relative to the player) firing. This lulls the player into
a false sense of security since if they want to keep rotating around the boss to hit it
from the side they simply need to outrun the furthest bullet stream. However, once
the fore gun (relative to the player) reaches a position where it can fire ahead of the
player from the angle they are running at, it turns back on to trap them once again.

David Sawridge:

Due to the irregularity among the number of time mechanics (4) and bosses (3)
towards the closing months of this project, a fourth and final boss was created to
make use of the speed-up time feature. Because of this, the playstyle needed to
tackle this boss were designed entirely around this mechanic. Upon entering this

room the player will notice the boss’s saw blade begin to spin and its colour turn from
its original metallic red to green. Once blade is at a threatening speed, the boss will
begin to chase the player around the room in an attempt to cause melee damage;
prompting the player to keep their distance and shoot back. Unlike the other bosses,
bullets will do much less damage against this enemy and will cease to do any
damage at all once this chasing phase is over, encouraging the player to find another
tactic.

After ten seconds, the boss’s saw blade will stop spinning and the boss will return to
its starting position to ready itself for the next phase. Once here, the boss will start to
slowly spin its saw again and change its colour back to the original red as it charges
up its next attack. This is the signal that bullets will no longer do any damage. Once
the colour is fully red, a devastating lunge attack will occur. Here, the boss will
calculate the distance from its position to the wall (through the player), and from this,
deduce how long it will take it to cover this distance and stop just short of the wall at
lunging speed. The player can combat this however, by using the speed-up bubble
on the boss before dodging out of the way, causing it to overshoot its calculated run
and slam into the wall.

Once this attack is complete, the boss’s red colour will drain back to green to begin
chasing the player again.

David Sawridge Boss Room:
The David Sawridge boss room plays a part in how the player can defeat David
Sawridge, as mentioned if the player is able to use the speed-up bubble and force
the boss to slam into the wall this will cause damage to David Sawridge.

This tactic won’t be shared with the player ahead of time but designed for people who
will take the time to study the boss and the possibilities involving the speed-up
bubble.

4f-7. Models / Textures
After a couple of months of development, the decision was made to replace the placeholder
models created at the start for something more substantial. It was decided the best course of
action was to purchase an asset on the Unity Asset Store which contained a number of
models with animations. Alongside this, a number of texture assets were also used to help
improve the level design. Allowing players to feel more immersed in the world.

4g. Testing and Feedback

4g-1 Itch.io Early Release
For external testing and reviewing, the indie development site itch.io was used to post a
free-to-download alpha/beta version of the game with the intent of receiving real customer
feedback on the game design, structure and balance, as well as bug reports. The release
was uploaded to itch.io on the 22nd of January 2019 and promoted on the Escape From
Time Tower FaceBook page. This version then had a hotpatch on the 23rd which added the
bottom wall fadeout as it became apparent very soon after the itch.io push that this greatly
hindered the player experience when playing near the bottom wall. As expected with this
being an early build version of the game, this alpha did not receive much attention with only
52 views on the game page and 10 downloads. However, it did serve to get the game name
out there on the site and worked as a test for pushing a build of the game to itch.io ready for
the next more advanced build.

4g-2 Friends and associates
The majority of game feedback has come from friends and associates who were asked in
person to trial varying builds of the game and provide verbal feedback to a member of the
project team in which this feedback was passed on to the rest of the group, discussed and
action taken based on the outcome of these discussions.

During the early weeks of April 2019 team member Liam Vallance spent a week working at
Future University in Hakodate Japan collaborating with a number of students on their
projects. In their spare time, a number of the Japanese students were happy to trial a build
of the game and provide their feedback of what they liked and felt needed adjusted. The
general reception of the game was well received and all the students agreed the fast pace of
the bullet hell game style was enjoyable and challenging and the different time mechanics
per level added a new interesting dynamic. The main feedback given was that the game was
a little too difficult and this could hinder the enjoyment of the game, as enemies took a lot of
shots to kill while the player only took a few and at this time there was no form of healing
mechanic in the game. This feedback was discussed by the group and it was based on this
development of a health pickup system to be implemented into the current ammo drop that
the damage and health values were adjusted accordingly as well as sparked the system.

Throughout development team member Nicky Jones has regularly showed the progress of
the game to multiple friends who specialise in playing shooting games of all genres, this has
helped guide the development of the project. Many of the frequent positives is the fast past
and constant action the game provides which a lot of people seem to gravitate to when first
playing the game, the more common complaints however have been the graphic style of the
game being very poor and mediocre. Other common complaints included the general quirks
the game offers like animations not working quick enough, random bugs and the way the AI
can lose focus so quickly.

5. Conclusion and Future Work

5a. Conclusion
In conclusion this project was a success, the general goal of the project was to investigate
the use of time manipulation mechanics in a gameplay setting. In order to test this we
decided to put these mechanics into a well established genre that would not typically mix
well with time manipulation mechanics. The challenge we set ourselves was to research into
previous games that successfully utilised time manipulation in both their gameplay and
narrative aspects. We took these mechanics and tried to make them work well with the bullet
hell genre by making each level of the game use a specific time manipulation mechanic as
the key to the success of the level and defeating the boss.

This project provided the opportunity for us to experience a like industry team management
system in which we used GitHub source control to keep the project flow with multiple
members. Each member was assigned tasks and great communication throughout the
project between the team members was the key to the success of the project.

5b. Future work

5b-1. Reverse Time Mechanic
There were some aspects of the reverse time mechanic that could have been improved or
expanded on with more time to work on them. There are two main reasons for certain
aspects not being included, either the feature would have been too complex to implement
within the timeframe of the project or the feature was so trivial and unnecessary for the
functionality that it was left out so that time could be put into more urgent and important
tasks.

One of the biggest advancements to the reverse time mechanic that could be implemented
is the handling of dead enemies and destroyed objects. In the current state if an enemy dies
or a bullet is destroyed then they are gone for good, even if the player rewinds the game to a
point before their death or destruction they will not return. With more time to expand this
feature objects could simply be disabled instead of being fully destroyed when they die or
are destroyed and remain for 3 seconds before they are finally deleted from the game world
to free up resources, this way they could continue to record their data and upon rewinding
could be brought brought back into existence by recording whether they are enabled or not
too. This particularly works well for enemies as killed enemies would appear to come back to
life helping to further the illusion of time flowing backwards.

A much smaller change would be to add more visual/audio feedback to the player that they
are rewinding, this is not crucial to the functionality of the reverse time mechanic and so was
skipped during the development of the project in favour of time management, the time was
spent on far more important aspects of the project such as other time mechanics and menu

systems. In the future for this to be implemented an audio cue to be played during the
reverse time activation as well as some kind of screen effect, something resembling the old
VHS rewind static screen stripes could fit the theme of the game or even showing the
stopwatch design from the games main logo with the hand on the clock moving
counterclockwise around the face.

5b-2. Time Travel Mechanic
Time Travel mechanic can be improved in many ways. We had a few suggestions from team
players, our supervisor and people who were testing the level. The main reason why some
of those ideas were not implemented was the time constraint of this project. Most of these
ideas required additional time in the design phase and this particular mechanic was
implemented very late.

The ability to travel between two worlds has existed in many games before. Usually, it was
used as a puzzle mechanic. We had many suggestions for different types of puzzles that
could have been interesting when using Time Travel ability. One of the ideas was a weapon
that allows moving other things and enemies in time to solve puzzles. This weapon has been
implemented, but unfortunately, I could not create an interesting puzzle that would justify
using this weapon in the final build. Moreover, a puzzle might be an interesting mechanic,
but it would not necessary fit into the concept of this game.

Similar to Titanfall 2 level “effect and cause” Time Travel can be used to tell a story in an
interesting way. The team has never decided that story was necessary for the game.
However, if we had more time available and someone would be interested in writing a story
of the Time Tower, this mechanic could have been helpful.

Another suggestion was that time travel must have a bigger impact on the gameplay. In the
game, this mechanic is used as a way to escape from a large number of enemies and can
be used an infinite number of times. However, there are no real consequences of travelling
in time. We could have added visual and gameplay changes that are a direct result of the
player’s time manipulations. For example, objects destroyed in the present would not exist in
the future. Although the idea was interesting, we did not have enough time to implement it.

5b-3. Procedural Room Generation
Since the rooms produced through procedural generation were very basic, there is a lot of
room to improve the algorithm further.

By far the easiest advancement that could be made would be to parameterise the textures
used for the floor, walls and doors. Currently these are pre-applied to the door and cube
prefabs that are then stretched and positioned by the script in order to build the room.
Adding public texture variables to the RoomBuilder.cs script would allow us to instead apply
these to the geometry at runtime. Since there is an instance of the procedural room
generator and therefore the room builder script in each scene, we then could pick and
choose different textures for each level, giving them a fresh and memorable look.

Another improvement could be to add more detail into the rooms through the use of
environmental structures such as pillars and tables. These would create an interesting
dynamic by giving player and enemies defences to hide behind. Again, this would be a fairly
simple addition to the algorithm since it would just involve instantiating a prefab in a suitable
position within the room, similarly to how the enemy spawner functions. The brunt of the time
spend developing this feature would be spent actually creating the structures themselves in
a 3D modelling program; however free pre-made assets could also be used.

5b-4. Animations and Art Design
There was some simple graphic design work done for the games logo and weapons UI
however in general none of the project team members possess any advanced design skills
and so the art and animations in the game currently are free to use or very cheap to obtain
Unity store assets, with very slim knowledge of implementation of these even those that exist
could be greatly improved. In the future we would either need to delve far deeper into game
design concepts, purchase far more advanced models and animation pack or bring a games
design specialist into the team who would be able to improve the quality of the games
animations and art design giving the project a much more polished look to the final product.

5b-5. Pick up Items
There are several Pick up items that have been included into the project. If future work were
to be done, more pick up items would be added. With more research we could add pickups
that could carry on to other levels, for example, extra lives, Armour to give the player
addition health. This could give the game an extra edge on replay ability.

5b-6. Save/Load
Currently the save feature is only capable of saving the level the player is on and its current
health, ideally this would more advanced and would be capable of saving all of the ammo
the player has accumulated for each gun and the position of the player inside the room.

Another improvement that would be nice to have in the game would be save checkpoints
once reaching/killing a boss and the ability to have floating save devices in the game that will
allow the player to interact with it and save.

5b-7. Audio Design
The current state of the project has very minimal audio design and is missing audio queues
in some key places. In the future we would like the game to have audio sound effects for
every major action in the game, sound effects for firing bullets, bullet impacts, melee attacks,
each time mechanic as well as some menu animation sound effects and button press sound
effects. This improvement could greatly improve the quality of the experience of playing the
game. There is music in the main menu as well as in the wardrobe but we would like there to
be more music throughout the game in general. In order to do this we would like to hire
some sound designers to work on the audio throughout the game.

6. References

Boccher, M (2015) Here’s how your time powers will work in Quantum Break. [Online] gamezone.com
Available at :
https://www.gamezone.com/news/here-s-how-your-time-powers-will-work-in-quantum-break-3422772/
(Accessed : 11 April 2019)

Davis, G (2017) ‘Procedural Level Generation in Unity for M.E.R.C. (part 1 of 2)’, Gamasutra.
Available at:
http://www.gamasutra.com/blogs/GrahamDavis/20170130/290326/Procedural_Level_Generation_in_
Unity_for_MERC_part_1_of_2.php (Accessed: 21 April 2019).

Hamilton, K (2018) The Mission That Proved Titanfall 2 Was Something Special. Available at:
https://kotaku.com/let-s-talk-about-titanfall-2-s-best-mission-1788777731 (Accessed: 15 April 2019).

Mechner, J. (2008). The Sands of Time: Crafting a Video Game Story. [online]
Electronicbookreview.com. Available at:
http://electronicbookreview.com/essay/the-sands-of-time-crafting-a-video-game-story/ (Accessed 9
April, 2019).

Totilo, S. (2007). "A Higher Standard" Game Designer Jonathan Blow Challenges Super Mario's Gold
Coins, "Unethical" MMO Design And Everything Else You May Hold Dear About Video Games.
[online] MTV News. Available at:
http://www.mtv.com/news/2455935/a-higher-standard-game-designer-jonathan-blow-challenges-supe
r-marios-gold-coins-unethical-mmo-design-and-everything-else-you-may-hold-dear-about-video-game
s/ (Accessed 10 April 2019).

Workman, R (2016) Quantum Break: How to Use Your Time Powers. [Online] primagames.com
Available at :
https://www.primagames.com/games/quantum-break/tips/quantum-break-how-use-your-time-powers
(Accessed : 11 April 2019)

https://www.gamezone.com/news/here-s-how-your-time-powers-will-work-in-quantum-break-3422772/
http://www.gamasutra.com/blogs/GrahamDavis/20170130/290326/Procedural_Level_Generation_in_Unity_for_MERC_part_1_of_2.php
http://www.gamasutra.com/blogs/GrahamDavis/20170130/290326/Procedural_Level_Generation_in_Unity_for_MERC_part_1_of_2.php
https://kotaku.com/let-s-talk-about-titanfall-2-s-best-mission-1788777731
http://electronicbookreview.com/essay/the-sands-of-time-crafting-a-video-game-story/
https://www.primagames.com/games/quantum-break/tips/quantum-break-how-use-your-time-powers

7. Bibliography

Number One (2008) Braid [Computer Game] PC/PS3/Xbox 360. Microsoft Studios

Remedy Entertainment (2016) Quantum Break [Computer Game] PC/Xbox One. Microsoft Studios

Respawn Entertainment (2016) Titanfall 2 [Computer Game] PC/PS4/Xbox One. Electronic Arts

Superhot Team (2016) SuperHot [Computer Game] PC/PS4 Xbox One. Superhot Team

Ubisoft Montreal (2003) Prince of Persia: The Sands of Time [Computer Game]
PC/PS2/PS3/Xbox/GameCube/Game Boy Advance/Mobile. Ubisoft

